[No authors listed]
Western blot analysis is currently the major method utilized for quantitatively assessing histone global modifications. However, there is a growing need to develop a highly specific, accurate, and multisite quantitative method. Herein, we report a liquid chromatography-tandem mass spectrometry-multiple reaction monitoring method to simultaneously quantify multisite modifications with unmatched specificity, sensitivity, and throughput. With one set of purification of histones by high pressure liquid chromatography or SDS-PAGE, nearly 20 modification sites including acetylation, propionylation, methylation, and ubiquitination were quantified within 2 h for two samples to be compared. Using this method, the relative levels of H2B ubiquitination and H3 Lys-79 methylation were quantified in the U937 human leukemia cell line, U937 derivative cell lines overexpressing anti-secretory factor 10 (AF10) and mutant AF10 with the deletion of the hDot1 binding domain OM-LZ. We found that H2B ubiquitination is inversely correlated with H3 Lys-79 methylation. Therefore, we propose that a catalytic and inhibitory loop mechanism may better describe the cross-talk relationship between H2B ubiquitination and H3 Lys-79 methylation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |