例如:"lncRNA", "apoptosis", "WRKY"

The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis.

J Am Chem Soc. 2010 May 26;132(20):7049-54. doi:10.1021/ja910583y
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The purple acid phosphatases (PAP) are binuclear metallohydrolases that catalyze the hydrolysis of a broad range of phosphomonoester substrates. The mode of substrate binding during catalysis and the identity of the nucleophile is subject to debate. Here, we used native Fe(3+)-Fe(2+) pig PAP (uteroferrin; Uf) and its Fe(3+)-Mn(2+) derivative to investigate the effect of metal ion substitution on the mechanism of catalysis. Replacement of the Fe(2+) by Mn(2+) lowers the reactivity of Uf. However, using stopped-flow measurements it could be shown that this replacement facilitates approximately a ten-fold faster reaction between both substrate and inorganic phosphate with the chromophoric Fe(3+) site. These data also indicate that in both metal forms of Uf, phenyl phosphate hydrolysis occurs faster than formation of a mu-1,3 phosphate complex. The slower rate of interaction between substrate and the Fe(3+) site relative to catalysis suggests that the substrate is hydrolyzed while coordinated only to the divalent metal ion. The likely nucleophile is a water molecule in the second coordination sphere, activated by a hydroxide terminally coordinated to Fe(3+). The faster rates of interaction with the Fe(3+) site in the Fe(3+)-Mn(2+) derivative than the native Fe(3+)-Fe(2+) form are likely mediated via a hydrogen bond network connecting the first and second coordination spheres, and illustrate how the selection of metal ions may be important in fine-tuning the function of this enzyme.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读