例如:"lncRNA", "apoptosis", "WRKY"

Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism.

J Biol Chem. 2010 Jun 11;285(24):18464-72. Epub 2010 Apr 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Escherichia coli possesses cytochrome bo' (CyoABCDE), cytochrome bd-I (CydAB), and cytochrome bd-II (AppBC) quinol oxidases, all of which can catalyze the terminal step in the aerobic respiratory chain, the reduction of oxygen by ubiquinol. Although CydAB has a role in the generation of DeltapH, AppBC has been proposed to alleviate the accumulation of electrons in the quinone pool during respiratory stress via electroneutral ubiquinol oxidation. A cydB mutant strain exhibited lower respiration rates while maintaining a wild type growth rate. Transcriptomic analysis revealed a dramatic up-regulation of AppBC in the cydB strain, accompanied by the induction of genes involved in glutamate/gamma-aminobutyric acid (GABA) antiport, the GABA shunt, the glyoxylate shunt, respiration (including appBC), motility, and osmotic stress. Transcription factor modeling suggests that the underpinning regulation is largely controlled by H-NS, GadX, FlhDC, and AppY. The transcriptional adaptations imply that cydB cells contribute to the proton motive force via consumption of intracellular protons and glutamate/GABA antiport. Indeed, supplementation of culture medium with l-glutamate stimulates growth in a cydB strain. Phenotype analyses of the cydB strain confirm decreased motility and elevated acid resistance and also an elevated cytochrome d spectroscopic signal in cells grown at low pH. We propose a mechanism via which E. coli can compensate for the loss of cytochrome bd-I activity; cytochrome bd-II-mediated quinol oxidation prevents the accumulation of NADH, whereas GABA synthesis/antiport maintains the proton motive force for ATP production.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读