例如:"lncRNA", "apoptosis", "WRKY"

Inhibition of c-FLIP expression by miR-512-3p contributes to taxol-induced apoptosis in hepatocellular carcinoma cells.

Oncol. Rep.2010 May;23(5):1457-62. doi:10.3892/or_00000784
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Dysregulation of the antiapoptotic protein cellular FLICE-like inhibitory protein (c-FLIP) has been proven to be associated with tumorigenesis and progress of most human cancers. However, its aberrant expression is poorly elucidated. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in tumorigenesis through negatively regulating gene expression. Our study disclosed that c-FLIP was overexpressed in HepG2 hepatocellular carcinoma cells and down-regulation of c-FLIP enhanced taxol-induced apoptosis. Taxol induction significantly decreased the protein level of c-FLIP. While no decrease in c-FLIP mRNA level was observed, indicating taxol decreased c-FLIP expression through a post-transcriptional mechanism. miR-512-3p was a predicted suppressor of c-FLIP and exhibited an opposite expression manner to c-FLIP before and after taxol induction. Luciferase report assay demonstrated miR-512-3p negatively regulated c-FLIP expression via a conserved miRNA-binding site in 3' untranslated region (3'UTR) of c-FLIP. The decrease of c-FLIP protein due to transfection of miR-512-3p further validated the inhibitory effect of miR-512-3p on c-FLIP. Additional transfection of miR-512-3p remarkably promoted taxol-induced apoptosis, confirming its involvement in apoptosis. In summary, our study disclosed a novel regulatory mechanism that down-regulation of c-FLIP by miR-512-3p contributed to taxol-induced apoptosis. Importantly, the pivotal role of miR-512-3p in determining c-FLIP abundance helps to broaden the implications for cancer therapy by developing small molecules to directly target c-FLIP at mRNA level.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读