例如:"lncRNA", "apoptosis", "WRKY"

Large conformational changes in the Escherichia coli tryptophan synthase beta(2) subunit upon pyridoxal 5'-phosphate binding.

FEBS J.2010 May;277(9):2157-70. Epub 2010 Mar 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


To understand the basis for the lower activity of the tryptophan synthase beta(2) subunit in comparison to the alpha(2)beta(2) complex, we determined the crystal structures of apo-beta(2) and holo-beta(2) from Escherichia coli at 3.0 and 2.9 A resolutions, respectively. To our knowledge, this is the first report of both beta(2) subunit structures with and without pyridoxal-5'-phosphate. The apo-type molecule retained a dimeric form in solution, as in the case of the holo-beta(2) subunit. The subunit structures of both the apo-beta(2) and the holo-beta(2) forms consisted of two domains, namely the N domain and the C domain. Although there were significant structural differences between the apo- and holo-structures, they could be easily superimposed with a 22 degrees rigid body rotation of the C domain. The pyridoxal-5'-phosphate-bound holo-form had multiple interactions between the two domains and a long loop (residues 260-310), which were missing in the apo-form. Comparison of the structures of holo-Ecbeta(2) and Stbeta(2) in the alpha(2)beta(2) complex from Salmonella typhimurium (Stalpha(2)beta(2)) identified the cause of the lower enzymatic activity of holo-Ecbeta(2) in comparison with Stalpha(2)beta(2). The substrate (indole) gate residues, Tyr279 and Phe280, block entry of the substrate into the beta(2) subunit, although the indole can directly access the active site as a result of a wider cleft between the N and C domains in the holo-Ecbeta(2) subunit. In addition, the structure around betaAsp305 of the holo-Ecbeta(2) subunit was similar to the open state of Stalpha(2)beta(2) with low activity, resulting in lower activity of holo-Ecbeta(2).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读