例如:"lncRNA", "apoptosis", "WRKY"

Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome.

Am. J. Physiol. Endocrinol. Metab.2010 Jun;298(6):E1219-25. Epub 2010 Mar 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The hyperinsulism/hyperammonemia (HI/HA) syndrome is caused by glutamate dehydrogenase (GDH) gain-of-function mutations that reduce the inhibition by GTP, consequently increasing the activity of GDH in vivo. The source of the hyperammonemia in the HI/HA syndrome remains unclear. We examined the effect of systemic activation of GDH on ammonia metabolism in the rat. 2-Aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) is a nonmetabolizable analog of the natural GDH allosteric activator leucine. A dose of 100 mumol BCH/100 g rat resulted in a mild systemic hyperammonemia. Using arterial-venous (A-V) differences, we exclude the liver, intestine, and skeletal muscle as major contributors to this BCH-induced hyperammonemia. However, renal ammonia output increased, as demonstrated by an increase in A-V difference for ammonia across the kidney in BCH-treated animals. Isolated renal cortical tubules incubated with BCH increased the rate of ammoniagenesis from glutamine by 40%. The flux through GDH increased more than twofold when BCH was added to renal mitochondria respiring on glutamine. The flux through glutaminase was not affected by BCH, whereas glutamate-oxaloacetate transaminase flux decreased when normalized to glutaminase flux. These data show that increased renal ammoniagenesis due to activation of GDH can explain the BCH-induced hyperammonemia. These results are discussed in relation to the organ source of the ammonia in the HI/HA syndrome as well as the role of GDH in regulating renal ammoniagenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读