例如:"lncRNA", "apoptosis", "WRKY"

Kaiso regulates Znf131-mediated transcriptional activation.

Exp. Cell Res.2010 Jun 10;316(10):1692-705. Epub 2010 Mar 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Kaiso is a dual-specificity POZ-ZF transcription factor that regulates gene expression by binding to sequence-specific Kaiso binding sites (KBS) or methyl-CpG dinucleotide pairs. Kaiso was first identified as a binding partner for the epithelial cell adhesion regulator p120(ctn). The p120(ctn)/Kaiso interaction is reminiscent of the beta-catenin/TCF interaction and several studies have suggested that Kaiso is a negative regulator of the Wnt/beta-catenin TCF signaling pathway. To gain further insight into Kaiso's function, we performed a yeast two-hybrid screen using the Kaiso POZ domain as bait. This screen identified the POZ-ZF protein, Znf131, as a Kaiso-specific binding partner. GST pull-down assays confirmed that the interaction is mediated via the POZ domain of each protein, and co-immunoprecipitation experiments further supported an in vivo Kaiso-Znf131 interaction. Using a Cyclic Amplification and Selection of Targets (CAST) approach, we identified the 12-base pair DNA palindrome sequence GTCGCR-(X)(n)-YGCGAC as a potential Znf131 binding element (ZBE). In vitro studies using electrophoretic mobility shift assay (EMSA) demonstrated that Znf131 binds the ZBE via its zinc finger domain. Znf131 DNA-binding specificity was confirmed using competition assays and ZBE mutational analyses. An artificial promoter-reporter construct containing four tandem copies of the ZBE was constructed and used to assess Znf131 transcriptional properties. We observed dose-dependent transcriptional activation of this artificial promoter-reporter by Znf131 in both epithelial and fibroblast cells, suggesting that Znf131 is a transcriptional activator. Kaiso overexpression significantly decreased the Znf131-mediated transcriptional activation, and interestingly, co-expression of the Kaiso-specific interaction partner p120(ctn) relieved Kaiso's inhibition of Znf131-mediated transcriptional activation. These findings indicate that Znf131 is a transcriptional activator, a less common function of POZ-ZF proteins, that is negatively regulated by its heterodimerization partner Kaiso.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读