例如:"lncRNA", "apoptosis", "WRKY"

Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine.

Am J Physiol Regul Integr Comp Physiol. 2010 May;298(5):R1435-43. Epub 2010 Mar 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


To examine the regulation of hepatic acetogenesis in neonatal swine, carnitine palmitoyltransferase I (CPT I) activity was measured in the presence of varying palmitoyl-CoA (substrate) and malonyl-CoA (inhibitor) concentrations, and [1-(14)C]-palmitate oxidation was simultaneously measured. Accumulation rates of (14)C-labeled acetate, ketone bodies, and citric acid cycle intermediates within the acid-soluble products were determined using radio-HPLC. Measurements were conducted in mitochondria isolated from newborn, 24-h (fed or fasted), and 5-mo-old pigs. Acetate rather than ketone bodies was the predominant radiolabeled product, and its production increased twofold with increasing fatty acid oxidation during the first 24-h suckling period. The rate of acetogenesis was directly proportional to CPT I activity. The high activity of CPT I in 24-h-suckling piglets was not attributable to an increase in CPT I gene expression, but rather to a large decrease in the sensitivity of CPT I to malonyl-CoA inhibition, which offset a developmental decrease in affinity of CPT I for palmitoyl-CoA. Specifically, the IC(50) for malonyl-CoA inhibition and K(m) value for palmitoyl-CoA measured in 24-h-suckling pigs were 1.8- and 2.7-fold higher than measured in newborn pigs. The addition of anaplerotic carbon from malate (10 mM) significantly reduced (14)C accumulation in acetate (P < 0.003); moreover, the reduction was much greater in newborn (80%) than in 24-h-fed (72%) and 5-mo-old pigs (55%). The results demonstrate that acetate is the primary product of hepatic mitochondrial beta-oxidation in Sus scrofa and that regulation during early development is mediated primarily via kinetic modulation of CPT I.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读