例如:"lncRNA", "apoptosis", "WRKY"

Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin.

J. Neurochem.2010 Jun;113(5):1150-62. Epub 2010 Mar 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Caldendrin and recoverin are Ca(2+)-sensor proteins operating in neuronal systems. In a search for novel binding partners of recoverin, we employed an affinity column and identified caldendrin as a possible interaction partner. Caldendrin and recoverin co-localized in the retina in a subset of bipolar cells and in the pineal gland as revealed by immunofluorescence studies. The binding process was controlled by Ca(2+) as revealed by pull-down assays, and surface plasmon resonance studies. Importantly, caldendrin existed as a Ca(2+)-independent homodimer whereas a complex of recoverin and caldendrin formed with low to moderate affinity in the presence of Ca(2+). Co-transfection of COS-7 cells with plasmids harboring the gene for fluorescently labeled recoverin and caldendrin was used to study the cellular distribution by time-lapse fluorescence microscopy. Apparently, the increase of intracellular Ca(2+) facilitates the translocation of caldendrin to intracellular membranes, which is under control of complex formation with recoverin.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读