例如:"lncRNA", "apoptosis", "WRKY"

A novel zinc finger protein Zfp637 behaves as a repressive regulator in myogenic cellular differentiation.

J. Cell. Biochem.2010 May 15;110(2):352-62. doi:10.1002/jcb.22546
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Zinc finger proteins have been implicated as transcription factors in the differentiation and development of cells and tissues in higher organisms. The classical C2H2 zinc finger motif is one main type of motif of zinc finger proteins. Our previous studies have shown that Zfp637, which comprises six consecutively typical and one atypical C2H2 zinc finger motifs, is highly expressed in undifferentiated or poorly differentiated cell lines, but is moderately or slightly expressed in normal tissues. We have also demonstrated that Zfp637 can promote cell proliferation. However, its role in the regulation of cell differentiation remains unknown. We report here that endogenous Zfp637 as well as mTERT is expressed in proliferating C2C12 myoblasts and that their expression is downregulated during myogenic differentiation. Constitutive expression of Zfp637 in C2C12 myoblasts increased mTERT expression and telomerase activity, and promoted the progression of the cell cycle and cell proliferation. By contrast, endogenous repression of Zfp637 expression by RNA interference downregulated the mTERT gene and the activity of telomerase, and markedly reduced cell proliferation. Overexpression of Zfp637 also inhibited the expression of myogenic differentiation-specific genes such as MyoD and myogenin, and prevented C2C12 myoblast differentiation. Our results suggest that Zfp637 inhibits muscle differentiation through a defect in the cell cycle exit by potentially regulating mTERT expression in C2C12 myoblasts. This may provide a new research line for studying muscle differentiation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读