例如:"lncRNA", "apoptosis", "WRKY"

Chemotactic activation of Dictyostelium AGC-family kinases AKT and PKBR1 requires separate but coordinated functions of PDK1 and TORC2.

J. Cell. Sci.2010 Mar 15;123(Pt 6):983-92
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Protein kinases AKT and PKBR1 of Dictyostelium belong to the AGC protein kinase superfamily. AKT and PKBR1 are phosphorylated at similar sites by phosphoinositide-dependent kinase 1 (PDK1) and TORC2 kinases; however, they have different subcellular localizing domains. AKT has a phosphoinositide 3-kinase (PI3K)/phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)]-regulated PH (pleckstrin homology) domain whereas PKBR1 is myristoylated and persistently membrane localized. Using strains defective for PI3K/PtdIns(3,4,5)P(3)-, PDK1- and TORC2-signaling or strains that express phospho-site mutants of AKT and PKBR1, we dissect the different roles of PI3K/PtdIns(3,4,5)P(3), PDK1 and TORC2. We show that activation of AKT and PKBR1 requires PDK1-site phosphorylation, but that phosphorylation by TORC2 is insufficient for AKT or PKBR1 activation. However, PDK1-site phosphorylation is dependent on phosphorylation by TORC2, which suggests that there is regulatory coordination among PDK1, TORC2 and their phospho-site targets. This defines a separate input for signaling in control of chemotaxis and dependency on PDK1 function. We also demonstrate that PDK1 in Dictyostelium functions independently of PI3K/PtdIns(3,4,5)P(3). Finally, we show that AKT and PKBR1 exhibit substrate selectivity and identify two novel lipid-interacting proteins preferentially phosphorylated by AKT. Despite certain similarities, AKT and PKBR1 have distinct regulatory paths that impact activation and effector targeting, with PDK1 serving a central role.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读