例如:"lncRNA", "apoptosis", "WRKY"

Proteolytic processing of an Arabidopsis membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity.

Biochem. J.2010 Apr 14;427(3):359-67
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Changes in membrane fluidity are the earliest cellular events that occur in plant cells upon exposure to cold. This subsequently triggers physiological processes, such as calcium influx and reorganization of actin cytoskeletons, and induces expression of cold-responsive genes. The plasma-membrane-anchored NAC (NAM/ATAF/CUC) transcription factor NTL6 is of particular interest. Cold triggers proteolytic activation of the dormant NTL6 protein, which in turn elicits pathogen-resistance responses by inducing a small group of cold-inducible PR (pathogenesis-related) genes in Arabidopsis. In the present study, we show that proteolytic processing of NTL6 is regulated by cold-induced remodelling of membrane fluidity. NTL6 processing was stimulated rapidly by cold. The protein stability of NTL6 was also enhanced by cold. The effects of cold on NTL6 processing and protein stability were significantly reduced in cold-acclimatized plants, supporting the regulation of NTL6 processing by membrane fluidity. Consistent with this, although NTL6 processing was stimulated by pharmacological agents that reduce membrane fluidity and thus mimic cold, it was inhibited when plants were treated with a 18:3 unsaturated fatty acid, linolenic acid. In addition, the pattern of NTL6 processing was changed in Arabidopsis mutants with altered membrane lipid compositions. Assays employing chemicals that inhibit activities of the proteasome and proteases showed that NTL6 processing occurs via the regulated intramembrane proteolysis mechanism. Interestingly, a metalloprotease inhibitor blocked the NTL6 processing. These observations indicate that a metalloprotease activity is responsible for NTL6 processing in response to cold-induced changes in membrane fluidity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读