例如:"lncRNA", "apoptosis", "WRKY"

Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsromega transcripts help suppress poly(Q) pathogenesis in fly models.

Genetics. 2010 Apr;184(4):927-45. Epub 2010 Jan 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Following earlier reports on modulation of poly(Q) toxicity in Drosophila by the developmentally active and stress-inducible noncoding hsromega gene, we investigated possible mediators of this modulation. downregulation of the large nuclear hsromega-n transcript, which organizes the nucleoplasmic omega speckles, suppressed the enhancement of poly(Q) toxicity brought about by reduced availability of the heterogeneous nuclear ribonucleoprotein (hnRNP) Hrb87F and of the transcriptional regulator, cAMP response element binding (CREB) binding protein (CBP). Levels of CBP RNA and protein were reciprocally affected by hsromega transcript levels in eye disc cells. Our data suggest that CBP and hnRNPs like Hrb57A and Hrb87F physically interact with each other. In addition, downregulation of hsromega transcripts partially rescued eye damage following compromised proteasome activity, while overexpression of hsromega and/or poly(Q) proteins disrupted the proteasomal activity. Rescue of poly(Q) toxicity by required normal proteasomal function. We suggest that hsromega-duanyu1615 suppresses poly(Q) toxicity by elevating cellular levels of CBP, by enhancing proteasome-mediated clearance of the pathogenic poly(Q) aggregates, and by inhibiting induced apoptosis. The direct and indirect interactions of the hsromega transcripts with a variety of regulatory proteins like hnRNPs, CBP, proteasome, Drosophila inhibitor of apoptosis protein 1 (DIAP1), etc., reinforce the view that the noncoding hsromega RNA functions as a "hub" in cellular networks to maintain homeostasis by coordinating the functional availability of crucial cellular regulatory proteins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读