[No authors listed]
A gating mechanism of the beta-barrel-forming outer membrane protein G (OmpG) from Escherichia coli was recently presented. The mechanism was based on X-ray structures revealed from crystals grown from solubilized OmpG at both neutral pH and acidic pH. To investigate whether these conformations represent the naturally occurring gating mechanism, we reconstituted OmpG in native E. coli lipids and applied high-resolution atomic force microscopy. The reconstituted OmpG molecules assembled into both monomers and dimers. Single monomeric and dimeric OmpG molecules showed open channel entrances at pH 7.5 and at room temperature. The extracellular loops connecting the beta-strands that form the transmembrane beta-barrel pore exhibited elevated structural flexibility. Upon lowering the pH to 5.0, the conformation of OmpG molecules changed to close the extracellular entrance of their channel. It appears that one or more of the extracellular loops collapsed onto the channel entrance. This conformational change was fully reversible. Our data confirm that the previously reported gating mechanism of OmpG occurs at physiological conditions in E. coli lipid membranes.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |