例如:"lncRNA", "apoptosis", "WRKY"

Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: a novel mechanism of retinoid growth-inhibitory activity.

Mol. Cancer Ther.2009 Dec;8(12):3360-8
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR), a metabolite of fenretinide (4-HPR) present in plasma of 4-HPR-treated patients, is very effective in inducing growth inhibition and apoptosis in several cancer cell lines. 4-Oxo-4-HPR and 4-HPR have different mechanisms of action because 4-oxo-4-HPR, unlike 4-HPR, causes marked cell accumulation in G2-M phase. Here, we investigated the molecular events involving 4-oxo-4-HPR-induced cell cycle perturbation in ovarian (A2780 and IGROV-1) and breast (T47D, estrogen receptor+ and BT-20, estrogen receptor-) cancer cells. 4-Oxo-4-HPR induced a delay of mitosis (with mitotic index increasing 5- to 6-fold in all cell lines) without progression beyond the anaphase, as shown by cyclin B1 expression. 4-Oxo-4-HPR induced multipolar spindle formation and phosphorylation of BUBR1, resulting in activation of the spindle checkpoint. Multipolar spindles were not due to impairment of pole-focusing process, loss of centrosome integrity, or modulation of the expression levels of molecules associated with spindle aberrations (Kif 1C, Kif 2A, Eg5, Tara, tankyrase-1, centractin, and TOGp). We show here that 4-oxo-4-HPR targets microtubules because, in treated cells, it interfered with the reassembly of cold-depolymerized spindle microtubules and decreased the polymerized tubulin fraction. In cell-free assays, 4-oxo-4-HPR inhibited tubulin polymerization (50% inhibition of microtubule assembly at 5.9 micromol/L), suggesting a direct molecular interaction with tubulin. In conclusion, by showing that 4-oxo-4-HPR causes mitotic arrest through antimicrotubule activities, we delineate a new molecular mechanism for a retinoid.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读