例如:"lncRNA", "apoptosis", "WRKY"

The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant.

Mol Plant. 2010 Jan;3(1):91-100. Epub 2009 Nov 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sinapoylmalate is the major sinapate ester found in leaves of Arabidopsis thaliana, where it plays an important role in UV-B protection. Metabolic profiling of rosette leaves from 96 Arabidopsis accessions revealed that the Pna-10 accession accumulates sinapoylglucose instead of sinapoylmalate. This unique leaf sinapate ester profile is similar to that of the previously characterized sinapoylglucose accumulator1 (sng1) mutants. SNG1 encodes sinapoylglucose:malate sinapoyltransferase (SMT), a serine carboxypeptidase-like (SCPL) enzyme that catalyzes the conversion of sinapoylglucose to sinapoylmalate. In the reference Columbia genome, the SNG1 gene is located in a cluster of five SCPL genes on Chromosome II. PCR and sequencing analysis of the same genomic region in the Pna-10 accession revealed a 13-kb deletion that eliminates the SNG1 gene (At2g22990) and the gene encoding sinapoylglucose:anthocyanin sinapoyltransferase (SAT) (At2g23000). In addition to its sinapoylmalate-deficient phenotype, and consistent with the loss of SAT, Pna-10 is unable to accumulate sinapoylated anthocyanins. Interestingly, the Pna-17 accession, collected from the same location as Pna-10, has no such deletion. Further analysis of 135 lines collected from the same location as Pna-10 and Pna-17 revealed that four more lines contain the deletion found in Pna-10 accession, suggesting that either the deletion found in Pna-10 is a recent event that has not yet been eliminated through selection or that sinapoylmalate is dispensable for the growth of Arabidopsis under field conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读