例如:"lncRNA", "apoptosis", "WRKY"

Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: mechanistic insights from DFT calculations.

J. Inorg. Biochem.2010 Jan;104(1):37-46. Epub 2009 Oct 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The reaction mechanism of the dinuclear zinc enzyme human renal dipeptidase is investigated using hybrid density functional theory. This enzyme catalyzes the hydrolysis of dipeptides and beta-lactam antibiotics. Two different protonation states in which the important active site residue Asp288 is either neutral or ionized were considered. In both cases, the bridging hydroxide is shown to be capable of performing the nucleophilic attack on the substrate carbonyl carbon from its bridging position, resulting in the formation of a tetrahedral intermediate. This step is followed by protonation of the dipeptide nitrogen, coupled with C-N bond cleavage. The calculations establish that both cases have quite feasible energy barriers. When the Asp288 is neutral, the hydrolytic reaction occurs with a large exothermicity. However, the reaction becomes very close to thermoneutral with an ionized Asp288. The two zinc ions are shown to play different roles in the reaction. Zn1 binds the amino group of the substrate, and Zn2 interacts with the carboxylate group of the substrate, helping in orienting it for the nucleophilic attack. In addition, Zn2 stabilizes the oxyanion of the tetrahedral intermediate, thereby facilitating the nucleophilic attack.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读