[No authors listed]
Complement (C) activation is a crucial event in peripheral nerve degeneration but its effect on the subsequent regeneration is unknown. Here we show that genetic deficiency of the sixth C component, C6, accelerates axonal regeneration and recovery in a rat model of sciatic nerve injury. Foot-flick test and Sciatic Function Index monitored up to 5 weeks post-injury showed a significant improvement of sensory and motor function in the C6 deficient animals compared to wildtypes. Retrograde tracing experiments showed a significantly higher number of regenerated neurons at 1 week post-injury in C6 deficient rats than wildtypes. Pathology showed improved nerve regeneration in tibials of C6 deficient animals compared to wildtypes. Reconstitution with purified human C6 protein re-established the wildtype phenotype whereas pharmacological inhibition of C activation with soluble C receptor 1 (sCR1) facilitated recovery and improved pathology similarly to C6 deficient animals. We suggest that a destructive C-mediated event during nerve degeneration hampers the subsequent regenerative process. These findings provide a rationale for the testing of anti-complement agents in human nerve injury.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |