例如:"lncRNA", "apoptosis", "WRKY"

Role of Kenae/CCDC125 in cell motility through the deregulation of RhoGTPase.

Int. J. Mol. Med.2009 Nov;24(5):605-11. doi:10.3892/ijmm_00000271
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Isaac's syndrome is a movement disorder characterized by hyperexcitability of peripheral motor nerves. Patients with Isaac's syndrome often develop auto-antibodies to voltage-gated potassium channels (VGKCs) which block their function. However, anti-VGKC antibodies are not detected in all patients with Isaac's syndrome, suggesting the existence of another etiology. In this study, we performed immunoscreening using the serum from a patient with Isaac's syndrome and identified the novel gene named Kenae/CCDC125. Expression analysis of Kenae/CCDC125 revealed that its transcript was highly expressed in tissues associated with the immune system, such as the thymus, spleen and bone marrow. In cells stably expressing Kenae/CCDC125, delay in cell motility and deregulation of RhoGTPase (RhoA, Rac1 and cdc42) activity to extracellular stimuli were demonstrated. These results suggest that the novel gene, Kenae/CCDC125, acts as a regulator of cell motility through RhoA, Rac1 and cdc42.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读