例如:"lncRNA", "apoptosis", "WRKY"

Autophagy-deficient Schizosaccharomyces pombe mutants undergo partial sporulation during nitrogen starvation.

Microbiology (Reading, Engl.). 2009 Dec;155(Pt 12):3816-3826. doi:10.1099/mic.0.034389-0. Epub 2009 Sep 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Autophagy is triggered when organisms sense radical environmental changes, including nutritional starvation. During autophagy, cytoplasmic components, including organelles, are enclosed within autophagosomes and are degraded upon lysosome-vacuole fusion. In this study, we show that processing of GFP-tagged Atg8 can serve as a marker for autophagy in the fission yeast Schizosaccharomyces pombe. Using this marker, 13 Atg homologues were also found to be required for autophagy in fission yeast. In budding yeast, autophagy-deficient mutants are known to be sterile, whereas in fission yeast we found that up to 30 % of autophagy-defective cells with amino acid auxotrophy were able to recover sporulation when an excess of required amino acids was supplied. Furthermore, we found that approximately 15 % of the autophagy-defective cells were also able to sporulate when a prototrophic strain was subjected to nitrogen starvation, which suggested that fission yeast may store sufficient intracellular nitrogen to allow partial sporulation under nitrogen-limiting conditions, although the majority of the nitrogen source is supplied by autophagy. Monitoring of the sporulation process revealed that the process was blocked non-specifically at various stages in the atg1Delta and atg12Delta mutants, possibly due to a shortage of amino acids. Taking advantage of this partial sporulation ability of fission yeast, we sought evidence for the existence of a recycling system for nitrogen sources during starvation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读