例如:"lncRNA", "apoptosis", "WRKY"

N-CoR is required for patterning the anterior-posterior axis of zebrafish hindbrain by actively repressing retinoid signaling.

Mech. Dev.2009 Oct;126(10):771-80. Epub 2009 Sep 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Active repression of gene expression mediated by unliganded nuclear receptors plays crucial roles in early development of vertebrates. N-CoR (nuclear receptor co-repressor) is the first identified co-repressor that can repress retinoic acid (RA) inducible gene transcription in the absence of RA. Previously, N-CoR was reported to be required for late-stage organogenesis in mouse but whether N-CoR can affect RA-responsive early embryonic patterning is unknown. In this study, we report molecular cloning of zebrafish orthologue of N-CoR and its wide distribution pattern during zebrafish early development. Knocking down n-cor elevates endogenous RA signaling in zebrafish embryos and posteriorizes the neural ectoderm. Overexpressing or knocking down n-cor in zebrafish embryos alters the length of hindbrain in a manner similar to decreasing or increasing RA signaling in embryos, respectively. Taken together, our results demonstrate that N-CoR is essential for early hindbrain patterning by actively repressing retinoid signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读