[No authors listed]
The generation of a functioning Drosophila eye requires the coordinated differentiation of multiple cell types and the morphogenesis of eye-specific structures. Here we show that D-Pax2 plays a significant role in lens development through regulation of the Crystallin gene and because Crystallin is also expressed in D-Pax2(+) cells in the external sensory organs. Loss of D-Pax2 function leads to loss of Crystallin expression in both eyes and bristles. A 2.3 kilobase (kb) upstream region of the Crystallin gene can drive GFP expression in the eye and is dependent on D-Pax2. In addition, D-Pax2 binds to an evolutionarily conserved site in this region that, by itself, is sufficient to drive GFP expression in the eye. However, mutation of this site does not greatly affect the regulatory region's function. The data indicate that D-Pax2 acts to promote lens development by controlling the production of the major protein component of the lens. Whether this control is direct or indirect remains unresolved.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |