例如:"lncRNA", "apoptosis", "WRKY"

An investigation of the catalytic mechanism of S-adenosylmethionine synthetase by QM/MM calculations.

Arch Biochem Biophys. 2009 Dec;492(1-2):82-92. Epub 2009 Aug 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Catalysis by S-adenosylmethionine synthetase has been investigated by quantum mechanical/molecular mechanical calculations, exploiting structures of the active crystalline enzyme. The transition state energy of +19.1 kcal/mol computed for a nucleophilic attack of the methionyl sulfur on carbon-5' of the nucleotide was indistinguishable from the experimental (solution) value when the QM residues were an uncharged histidine that hydrogen bonds to the leaving oxygen-5' and an aspartate that chelates a Mg2+ ion, and was similar (+18.8 kcal/mol) when the QM region also included the active site arginine and lysines. The computed energy difference between reactant and product was also consistent with their equimolar abundance in co-crystals. The calculated geometrical changes support catalysis of a S(N)2 reaction through hydrogen bonding of the liberated oxygen-5' to the histidine, charge neutralization by the two Mg2+ ions, and stabilization of the product sulfonium cation through a close, non-bonded, contact between the sulfur and the ribose oxygen-4'.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读