例如:"lncRNA", "apoptosis", "WRKY"

Furthering pharmacological and physiological assessment of the glutamatergic receptors at the Drosophila neuromuscular junction.

Comp. Biochem. Physiol. C Toxicol. Pharmacol.2009 Nov;150(4):546-57. Epub 2009 Aug 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Drosophila melanogaster larval neuromuscular junctions (NMJs) serve as a model for synaptic physiology. The molecular sequences of the postsynaptic glutamate receptors have been described; however, the pharmacological profile has not been fully elucidated. The postsynaptic molecular sequence suggests a novel glutamate receptor subtype. Kainate does not depolarize the muscle, but dampens evoked EPSP amplitudes. Quantal responses show a decreased amplitude and area under the voltage curve indicative of reduced postsynaptic receptor sensitivity to glutamate transmission. ATPA, a kainate receptor agonist, did not mimic kainate's action. The metabotropic glutamate receptor agonist t-ACPD had no effect. Domoic acid, a kainate/AMPA receptor agonist, blocks the postsynaptic receptors without depolarizing the muscle. However, SYM 2081, a kainate receptor agonist, did depolarize the muscle and reduce the EPSP amplitude at 1 mM but not at 0.1 mM. This supports the notion that these are generally a quisqualate subtype receptors with some oddities in the pharmacological profile. The results suggest a direct postsynaptic action of kainate due to partial antagonist action on the quisqualate receptors. There does not appear to be presynaptic auto-regulation via a kainate receptor subtype or a metabotropic auto-receptor. This study aids in furthering the pharmokinetic profiling and specificity of the receptor subtypes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读