[No authors listed]
We previously reported that double disruption of protein phosphatase (PPase) genes PTP2 (phosphotyrosine-specific PPase) and MSG5 (phosphotyrosine and phosphothreonine/serine-PPase) causes Ca(2+) sensitive growth, whereas the single disruptions do not. This finding suggests that Ptp2p and Msg5p are involved in Ca(2+)-induced stress response in a redundant manner. To gain insight into the molecular mechanism causing calcium sensitivity of the ptp2 msg5 double disruptant, we performed fluorescence-activated cell sorting analysis and found a delayed G1 phase. This delayed G1 was consistent with the defect in bud emergence, and reduced CLN2 transcription upon addition of CaCl(2). We also found that Slt2p is hyper-phosphorylated in the Deltaptp2 Deltamsg5 double disruptant and that the vacuole of the Deltaptp2 Deltamsg5 double disruptant is fragmented even in the absence of Ca(2+). These findings suggest that both Ptp2p and Msg5p are involved in the G1 to S transition and vacuole morphogenesis possibly through their regulation of Slt2 pathway.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |