例如:"lncRNA", "apoptosis", "WRKY"

Channel-like NH3 flux by ammonium transporter AtAMT2.

FEBS Lett.2009 Sep 3;583(17):2833-8. Epub 2009 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Prokaryotes, plants and animals control ammonium fluxes by the regulated expression of ammonium transporters (AMTs) and/or the related Rhesus (Rh) proteins. Plant AMTs were previously reported to mediate electrogenic transport. Functional analysis of AtAMT2 from Arabidopsis in yeast and oocytes suggests that NH(4)(+) is the recruited substrate, but the uncharged form NH(3) is conducted. AtAMT2 partially co-localized with electrogenic AMTs and conducted methylamine with low affinity. This transport mechanism may apply to other plant ammonium transporters and explains the different capacities of AMTs to accumulate ammonium in the plant cell.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读