例如:"lncRNA", "apoptosis", "WRKY"

Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase.

Proc. Natl. Acad. Sci. U.S.A.2009 Jul 21;106(29):12109-14. Epub 2009 Jul 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Alpha-dystroglycan (alpha-DG) represents a highly glycosylated cell surface molecule that is expressed in the epithelial cell-basement membrane (BM) interface and plays an essential role in epithelium development and tissue organization. The alpha-DG-mediated epithelial cell-BM interaction is often impaired in invasive carcinomas, yet roles and underlying mechanisms of such an impaired interaction in tumor progression remain unclear. We report here a suppressor function of laminin-binding glycans on alpha-DG in tumor progression. In aggressive prostate and breast carcinoma cell lines, laminin-binding glycans are dramatically decreased, although the amount of alpha-DG and beta-dystroglycan is maintained. The decrease of laminin-binding glycans and consequent increased cell migration were associated with the decreased expression of beta3-N-acetylglucosaminyltransferase-1 (beta3GnT1). Forced expression of beta3GnT1 in aggressive cancer cells restored the laminin-binding glycans and decreased tumor formation. beta3GnT1 was found to be required for laminin-binding glycan synthesis through formation of a complex with LARGE, thus regulating the function of LARGE. Interaction of the laminin-binding glycans with laminin and other adhesive molecules in BM attenuates tumor cell migratory potential by antagonizing ERK/AKT phosphorylation induced by the components in the ECM. These results identify a previously undescribed role of carbohydrate-dependent cell-BM interaction in tumor suppression and its control by beta3GnT1 and LARGE.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读