[No authors listed]
Stochastic dynamics of promoter activity in bacterial cells were studied by using a dual-fluorescence reporter system of protein expression. The dual-fluorescence reporter system enabled us to calculate the amplitude of intrinsic noise generated during transcription and translation. By fitting the experimental data to a simple stochastic model of protein expression, we could estimate parameters representing the stochastic transition between the active and inactive states of a promoter. Using the system, we analyzed the stochastic dynamics of promoter activation of genes in the lysine biosynthesis pathway in Escherichia coli. We found that the promoter of lysA has a significantly slower transition rate between active and inactive states than other promoters in the lysine biosynthesis pathway. The infrequent switching between active and inactive states can be a dominant source of noise in lysA expression. Analysis using the dual-fluorescence reporter system provided a better understanding of stochastic dynamics in promoter activation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |