[No authors listed]
Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and duanyu1615 plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and duanyu1615 plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |