例如:"lncRNA", "apoptosis", "WRKY"

X11-like protein deficiency is associated with impaired conflict resolution in mice.

J. Neurosci.2009 May 06;29(18):5884-96
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Understanding how emotion is generated, how conflicting emotions are regulated, and how emotional states relate to sophisticated behaviors is a crucial challenge in brain research. Model animals showing selective emotion-related phenotypes are highly useful for examining these issues. Here, we describe a novel mouse model that withdraws in approach-avoidance conflicts. X11-like (X11L)/Mint2 is a neuronal adapter protein with multiple protein-protein interaction domains that interacts with several proteins involved in modulating neuronal activity. X11L-knock-out (KO) mice were subordinate under competitive feeding conditions. X11L-KO mice lost significantly more weight than cohoused wild-type mice without signs of decreased motivation to eat or physical weakness. In a resident-intruder test, X11L-KO mice showed decreased intruder exploration behavior. Moreover, X11L-KO mice displayed decreased marble-burying, digging and burrowing behaviors, indicating aberrant ethological responses to attractive stimuli. In contrast, X11L-KO mice were indistinguishable from wild-type mice in the open field, elevated plus maze, and light/dark transition tests, which are often used to assess anxiety-like behavior. Neurochemical analysis revealed a monoamine imbalance in several forebrain regions. The defective ethological responses and social behaviors in X11L-KO mice were rescued by the expression of X11L under a Camk2a promoter using the Tet-OFF system during development. These findings suggest that X11L is involved in the development of neuronal circuits that contribute to conflict resolution.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读