[No authors listed]
Previously, we found increased expression of l-arginine metabolizing enzymes in both kidneys from two-kidney, one-clip (2K1C) hypertensive rats (Helle F, Hultstrom M, Skogstrand T, Palm F, Iversen BM. Am J Physiol Renal Physiol 296: F78-F86, 2009). In the present study, we investigate whether AT(1) receptor activation can induce the changes observed in 2K1C. Four groups of rats were infused with 80 ng/min ANG II or saline for 14 days and/or given 60 mg x kg(-1) x day(-1) losartan. Gene expression was studied in isolated preglomerular vessels by RT-PCR. Dose-responses to ANG II were studied in isolated preglomerular vessels with and without acute NOS inhibition [10(-4) mol/l N(G)-nitro-l-arginine methyl ester (l-NAME)]. Expressions of endothelial nitric oxide synthase (eNOS), caveolin-1, and arginase-2 were not changed by ANG II infusion. CAT1 (0.3 8 +/- 0.07 to 0.73 +/- 0.12, P < 0.05), CAT2 (1.14 +/- 0.29 to 2.74 +/- 0.48), DDAH2 (1.09 +/- 0.27 to 2.3 +/- 0.46), and arginase-1 (1.08 +/- 0.17 to 1.82 +/- 0.22) were increased in ANG II-infused rats. This was prevented by losartan treatment, which reduced the expression of eNOS (0.97 +/- 0.26 to 0.37 +/- 0.11 in controls; 0.8 +/- 0.16 to 0.36 +/- 0.1 in ANG II-infused rats) and caveolin-1 (2.49 +/- 0.59 to 0.82 +/- 0.24 in controls and 2.59 +/- 0.61 to 1.1 +/- 0.25 in ANG II-infused rats). ANG II (10(-10) mol/l) caused vessels from ANG II-infused animals to contract to 53 +/- 15% of baseline diameter and 90 +/- 5% of baseline diameter in controls (P < 0.05) and was further enhanced by l-NAME to 4 +/- 4% of baseline diameter (P < 0.05). In vivo losartan treatment reduced the reactivity of isolated vessels to 91 +/- 2% of baseline in response to 10(-7) mol/l ANG II compared with 82 +/- 3% in controls (P < 0.05) and prevented the increased responsiveness caused by ANG II infusion. In conclusion, CAT1, CAT2, DDAH2, and arginase-1 expression in renal resistance vessels is regulated through the AT(1) receptor. This finding may be of direct importance for NOS and the regulation of preglomerular vascular function.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |