[No authors listed]
The defining feature of bacterial phase variation is a stochastic 'all-or-nothing' switching in gene expression. However, direct observations of these rare switching events have so far been lacking, obscuring possible correlations between switching events themselves, and between switching and other cellular events, such as division and DNA replication. We monitored the phase variation of type 1 fimbriae in individual Escherichia coli in real time and simultaneously tracked the chromosome replication process. We observed distinctive patterns of fim (fimbriae) expression in multiple genealogically related lineages. These patterns could be explained by a model that combines a single switching event with chromosomal fim replication, as well as the epigenetic inheritance of expressed fim protein and RNA, and their dilution by growth. Analysis of the moment of switching at sub-cell-cycle resolution revealed a correlation between fim switching and cell age, which challenges the traditional idea of phase variation as a random Poissonian phenomenon.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |