例如:"lncRNA", "apoptosis", "WRKY"

Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation.

Plant J.2009 Jul;59(1):100-9. Epub 2009 Feb 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The plant hormone auxin (indole-3-acetic acid or IAA) regulates plant development by inducing rapid cellular responses and changes in gene expression. Auxin promotes the degradation of Aux/IAA transcriptional repressors, thereby allowing auxin response factors (ARFs) to activate the transcription of auxin-responsive genes. Auxin enhances the binding of Aux/IAA proteins to the receptor TIR1, which is an F-box protein that is part of the E3 ubiquitin ligase complex SCF(TIR1). Binding of Aux/IAA proteins leads to degradation via the 26S proteasome, but evidence for SCF(TIR1)-mediated poly-ubiquitination of Aux/IAA proteins is lacking. Here we used an Arabidopsis cell suspension-based protoplast system to find evidence for SCF(TIR1)-mediated ubiquitination of the Aux/IAA proteins SHY2/IAA3 and BDL/IAA12. Each of these proteins showed a distinct abundance and repressor activity when expressed in this cell system. Moreover, the amount of endogenous TIR1 protein appeared to be rate-limiting for a proper auxin response measured by the co-transfected DR5::GUS reporter construct. Co-transfection with 35S::TIR1 led to auxin-dependent degradation, and excess of 35S::TIR1 even led to degradation of Aux/IAAs in the absence of auxin treatment. Expression of the mutant tir1-1 protein or the related F-box protein COI1, which is involved in jasmonate signaling, had no effect on Aux/IAA degradation. Our results show that SHY2/IAA3 and BDL/IAA12 are poly-ubiquitinated and degraded in response to increased auxin or TIR1 levels. In conclusion, our data provide experimental support for the model that SCF(TIR1)-dependent poly-ubiquitination of Aux/IAA proteins marks these proteins for degradation by the 26S proteasome, leading to activation of auxin-responsive gene expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读