例如:"lncRNA", "apoptosis", "WRKY"

Regulation of Dictyostelium morphogenesis by RapGAP3.

Dev. Biol.2009 Apr 15;328(2):210-20. Epub 2009 Jan 22
Taeck J Jeon 1 , Susan Lee , Gerald Weeks , Richard A Firtel
Taeck J Jeon 1 , Susan Lee , Gerald Weeks , Richard A Firtel

[No authors listed]

Author information
  • 1 Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.

摘要


Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3(-) cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3(-) cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3(-) cells may result in reduced directional movement of the mutant cells to the apex of the mound.