例如:"lncRNA", "apoptosis", "WRKY"

A bi-site mechanism for Escherichia coli F1-ATPase accounts for the observed positive catalytic cooperativity.

Biochim. Biophys. Acta. 2009 Aug;1787(8):1016-23. Epub 2009 Mar 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nucleotide binding to nucleotide-depleted F(1)-ATPase from Escherichia coli (EcF(1)) during MgATP hydrolysis in the presence of excess epsilon subunit has been studied using a combination of centrifugal filtration and column-centrifugation methods. The results show that nucleotide-binding properties of catalytic sites on EcF(1) are affected by the state of occupancy of noncatalytic sites. The ATP-concentration dependence of catalytic-site occupancy during MgATP hydrolysis demonstrates that a bi-site mechanism is responsible for the positive catalytic cooperativity observed during multi-site catalysis by EcF(1). The results suggest that a bi-site mechanism is a general feature of F(1) catalysis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读