例如:"lncRNA", "apoptosis", "WRKY"

Expression and purification of recombinant M-Pol I from Saccharomyces cerevisiae with alpha-1,6 mannosylpolymerase activity.

Protein Expr. Purif.2009 Jul;66(1):1-6. Epub 2009 Feb 26
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mannan outer chain N-glycan structures are yeast/fungal-specific typically found on secreted and cell wall glycoproteins. Mannan outer chains consist of an alpha-1,6 polymannose backbone attached to a Man(8-10)(GlcNAc)(2) core. The backbone contains branches of alpha-1,2 mannose residues, terminated with alpha-1,3 mannose and decorated with alpha-1,2 mannose phosphate. Mannan biosynthesis starts in the Golgi with the initial polymerization of the alpha-1,6 linked mannose backbone by the M-Pol I complex. Constructs encoding soluble portions of the M-Pol I subunits, Mnn9p and Van1p from Saccharomyces cerevisiae, were expressed in Pichia pastoris. Both subunits had to be expressed in the same strain to obtain the recombinant proteins. Recombinant M-Pol I was made only by the KM71 strain transformed with two vectors: one encoding Mnn9p and the other encoding Van1p. Soluble secreted M-Pol I was purified by sequential chromatography on DEAE-Trisacryl, GDP-Hexanolamine-Sepharose and Superdex 200. Characterization of the purified complex indicates that recombinant M-Pol 1 is a Mnn9p-Van1p heterodimer. Purified M-Pol I was active with alpha-1,6 mannobiose as acceptor and GDP-mannose as donor. HPLC identified five products confirmed to be 3-7 mannose residues long. Digestion with linkage-specific alpha-mannosidases revealed that the linkage formed is exclusively alpha-1,6. No alpha-1,2 mannosyltransferase activity, reported previously for M-Pol I immunoprecipitates from cell extracts was detected. These results provide further information on the role of M-Pol I in mannan biosynthesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读