例如:"lncRNA", "apoptosis", "WRKY"

Differential effects of depletion of ARL1 and ARFRP1 on membrane trafficking between the trans-Golgi network and endosomes.

J Biol Chem. 2009 Apr 17;284(16):10583-92. Epub 2009 Feb 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


ARFRP1 and ARL1, which are both ARF-like small GTPases, are mammalian orthologs of yeast Arl3p and Arl1p, respectively. In yeast, Arl3p targeted to trans-Golgi network (TGN) membranes activates Arl1p, and the activated Arl1p in turn recruits a GRIP domain-containing protein; this complex regulates retrograde transport to the TGN and anterograde transport from the TGN. In the present study, using RNA interference-mediated knockdown of ARFRP1 and ARL1, we have examined whether the orthologs of Arl3p-Arl1p-GRIP story serve similar functions in mammalian cells. However, we have unexpectedly found differential roles of ARL1 and ARFRP1. Specifically, ARL1 and ARFRP1 regulate retrograde transport of Shiga toxin to the TGN and anterograde transport of VSVG from the TGN, respectively. Furthermore, we have obtained evidence suggesting that a SNARE complex containing Vti1a, syntaxin 6, and syntaxin 16 is involved in Shiga toxin transport downstream of ARL1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读