例如:"lncRNA", "apoptosis", "WRKY"

Steroids initiate a signaling cascade that triggers rapid sporulation in Dictyostelium.

Development. 2009 Mar;136(5):803-12. Epub 2009 Jan 28
Christophe Anjard 1 , Yongxuan Su , William F Loomis
Christophe Anjard 1 , Yongxuan Su , William F Loomis

[No authors listed]

Author information
  • 1 Center for Molecular Genetics, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

摘要


Encapsulation of prespore cells of Dictyostelium discoideum is controlled by several intercellular signals to ensure appropriate timing during fruiting body formation. Acyl-CoA-binding protein, AcbA, is secreted by prespore cells and processed by the prestalk protease TagC to form the 34 amino acid peptide SDF-2 that triggers rapid encapsulation. AcbA is secreted when gamma-aminobutyric acid (GABA) is released from prespore cells and binds to GrlE, a G protein-coupled receptor (GPCR). Analysis of SDF-2 production in mutant strains lacking Galpha subunits and GPCRs, either as pure populations or when mixed with other mutant strains, uncovered the non-cell-autonomous roles of GrlA, Galpha4 and Galpha7. We found that Galpha7 is essential for the response to GABA and is likely to be coupled to GrlE. GrlA-null and Galpha4-null cells respond normally to GABA but fail to secrete it. We found that they are necessary for the response to a small hydrophobic molecule, SDF-3, which is released late in culmination. Pharmacological inhibition of steroidogenesis during development blocked the production of SDF-3. Moreover, the response to SDF-3 could be blocked by the steroid antagonist mifepristone, whereas hydrocortisone and other steroids mimicked the effects of SDF-3 when added in the nanomolar range. It appears that SDF-3 is a steroid that elicits rapid release of GABA by acting through the GPCR GrlA, coupled to G protein containing the Galpha4 subunit. SDF-3 is at the head of the cascade that amplifies the signal for encapsulation to ensure the rapid, synchronous formation of spores.