[No authors listed]
In the fission yeast Schizosaccharomyces pombe, three P-type ATPases, namely Cta4p, Pmr1p, and Pmc1p, have been shown to be essential for Ca(2+) homeostasis and are required for specific cellular functions as well. Here, we show that the simultaneous deletion of pmc1(+) and which encodes a putative P(5)-type ATPase, causes a hypersensitive growth to either high concentrations of Ca(2+) in a medium, or the antiarrhythmic drug amiodarone, which has been known to cause a disruption of Ca(2+) homeostasis. On the other hand, simultaneous deletion of pmr1(+) and causes a hypersensitive growth to Mn(2+) depletion in a medium. The green fluorescent protein-tagged duanyu1842C29A4.19c protein reveals a typical localization pattern of the Golgi proteins, but the duanyu1842C29A4.19c protein is not exchangeable in function with Pmr1p, which is required for Ca(2+)/Mn(2+) homeostasis in secretory pathways. These results suggest that the putative P(5)-type ATPase encoded by duanyu1842C29A4.19c is essential for Ca(2+) and Mn(2+ )homeostasis in the absence of P(2)-type ATPases, Pmc1p or Pmr1p, respectively. According to the precedent nomenclature of calcium/cation transporting ATPase in fission yeast, was named cta5(+) in this study.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |