例如:"lncRNA", "apoptosis", "WRKY"

The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress.

J. Mol. Biol.2009 Feb 13;386(1):134-48. Epub 2008 Dec 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K(+)-transport system KdpFABC in response to K(+) limitation or salt stress. Under K(+) limiting conditions the Kdp system restores the intracellular K(+) concentration, while in response to salt stress K(+) is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K(+), so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD-->KdpE-->DNA) resulting in phosphorylation of KdpE at a K(+) concentration that would otherwise almost prevent phosphorylation. In agreement, in a DeltauspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K(+) limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE~P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读