例如:"lncRNA", "apoptosis", "WRKY"

The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx.

J. Bacteriol.2009 Feb;191(4):1268-77. Epub 2008 Dec 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The global transcriptional regulator Spx of Bacillus subtilis is controlled at several levels of the gene expression process. It is maintained at low concentrations during unperturbed growth by the ATP-dependent protease ClpXP. Under disulfide stress, Spx concentration increases due in part to a reduction in ClpXP-catalyzed proteolysis. Recent studies of Larsson and coworkers (Mol. Microbiol. 66:669-684, 2007) implicated the product of the yjbH gene as being necessary for the proteolytic control of Spx. In the present study, yeast two-hybrid analysis and protein-protein cross-linking showed that Spx interacts with YjbH. YjbH protein was shown to enhance the proteolysis of Spx in reaction mixtures containing ClpXP protease but not ClpCP protease. An N-terminal truncated form of YjbH with a deletion of residues 1 to 24 (YjbH(Delta1-24)) showed no proteolysis enhancement activity. YjbH is specific for Spx as it did not accelerate proteolysis of the ClpXP substrate green fluorescent protein (GFP)-SsrA, a GFP derivative with a C-terminal SsrA tag that is recognized by ClpXP. Using inductively coupled plasma atomic emission spectroscopy and 4-(2-pyridylazo) resorcinol release experiments, YjbH was found to contain zinc atoms. Zinc analysis of YjbH(Delta1-24) revealed that the N-terminal histidine-rich region is indispensable for the coordination of at least one Zn atom. A Zn atom coordinated by the N-terminal region was rapidly released from the protein upon treatment with a strong oxidant. In conclusion, YjbH is proposed to be an adaptor for ClpXP-catalyzed Spx degradation, and a model of YjbH redox control involving Zn dissociation is presented.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读