例如:"lncRNA", "apoptosis", "WRKY"

Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p.

J Biol Chem. 2009 Feb 13;284(7):4422-8. Epub 2008 Dec 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The yeast zinc cluster transcription factor Oaf1p activates transcription of target genes in response to direct binding of fatty acids in a manner analogous to the vertebrate nuclear receptor peroxisome proliferator-activated receptoralpha (PPARalpha). PPARs and other metazoan nuclear receptors productively engage several distinct LXXLL motif-containing co-activators, including p160 family members and the TRAP220/MED1 subunit of the Mediator co-activator, to promote ligand-dependent gene activation. Yeast, however, does not appear to harbor LXXLL motif co-activators, and the mechanism of fatty acid-dependent gene activation by the yeast PPARalpha analog Oaf1p is unknown. Here we show that the yeast Mediator subunit Gal11p/MED15 and its activator-targeted KIX domain plays a critical role in fatty acid-dependent transcriptional regulation of fatty acid beta-oxidation and peroxisomal genes by Oaf1p and for the ability of yeast to utilize fatty acids as a sole carbon source. Moreover, structural studies by NMR spectroscopy reveal that the Oaf1p activation domain interacts with the Gal11p/MED15 KIX domain in a manner similar to the yeast zinc cluster family member and xenobiotic receptor Pdr1p, revealing that the Gal11p/MED15 KIX domain is a key target of several ligand-dependent transcription factors in yeast. Together with previous work showing that the Caenorhabditis elegans Gal11p/MED15 homolog MDT-15 plays a critical role in regulation of fatty acid metabolism by the nematode PPAR-like nuclear receptor NHR-49, the findings presented here provide evidence for an ancient and essential role of a Mediator co-activator subunit in regulation of fatty acid metabolism by nuclear receptor-like transcription factors in eukaryotes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读