[No authors listed]
The unique biology of prion proteins (PrPs) allied with the public-health risks posed by prion zoonoses, such as various animal neurodegenerations, has focused much attention on the molecular basis of the controls cross-species and on the similarities between PrPs from different species. Given the common feature of PrPs as Cu(2+) binding proteins, it appears relevant to compare the impact of Cu(2+) on the stability constants and structures of "physiological" complexes. After having comprehensively delineated the interaction of Cu(2+) with mammalian and avian PrPs, the stabilities and molecular structures of species generated by Cu(2+) interacting with the irregular repeated domain derived from Danio rerio zebrafish PrP-rel-2 were investigated. Copper complexes with different zebrafish PrP-rel-2 fragments were analyzed by potentiometric and spectroscopic techniques. The data were interpreted as to provide evidence of all investigated repeat units selectively binding Cu(2+) via the His imidazole(s). The structural models obtained from paramagnetic NMR showed an intra- or inter-copper binding according to the number of the His in the sequence. In comparison to the mammalian and avian cases, the enzymatic function referred to SOD-like activity was shown to be rather faint in the fish PrPs cases.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |