例如:"lncRNA", "apoptosis", "WRKY"

The putative aminophospholipid translocases, DNF1 and DNF2, are not required for 7-nitrobenz-2-oxa-1,3-diazol-4-yl-phosphatidylserine flip across the plasma membrane of Saccharomyces cerevisiae.

J Biol Chem. 2008 Dec 12;283(50):35060-9. Epub 2008 Oct 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The regulation of phosphatidylserine (PS) distribution across the plasma membrane of eukaryotic cells has been implicated in numerous cell functions (e.g. apoptosis and coagulation). In a recent study, fluorescent phospholipids labeled in the acyl chain with 7-nitrobenz-2-oxa-1, 3-diazol-4-yl (NBD) were used to identify two members of the P4 subfamily of P-type ATPases, Dnf1p and Dnf2p, that are necessary for the inward-directed transport of phospholipids across the plasma membrane (flip) of yeast ( Pomorski, T., Lombardi, R., Riezman, H., Devaux, P. F., Van Meer, G., and Holthuis, J. C. (2003) Mol. Biol. Cell 14, 1240-1254 ). Herein, we present evidence that the flip of NBD-labeled PS (NBD-PS) across the plasma membrane does not require the expression of Dnf1p or Dnf2p. In strains in which DNF1 and DNF2 are both deleted, the flip of NBD-PS is increased approximately 2-fold over that of the isogenic parent strain, whereas the flip of NBD-labeled phosphatidylcholine and NBD-labeled phosphatidylethanolamine are reduced to approximately 20 and approximately 50%, respectively. The mechanism responsible for NBD-PS flip is similar to that for NBD-labeled phosphatidylcholine and NBD-labeled phosphatidylethanolamine in its dependence on cellular ATP and the plasma membrane proton electrochemical gradient, as well as its regulation by the transcription factors Pdr1p and Pdr3p. Based on the observation that deletion or inactivation of all four members of the DRS2/DNF essential subfamily of P-type ATPases does not affect NBD-PS flip, we conclude that the activity reflected by NBD-PS internalization is not the essential function of the DRS2/DNF subfamily of P-type ATPases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读