[No authors listed]
We hypothesized that A2A adenosine receptor (A2A AR) activation causes vasorelaxation through cytochrome P-450 (CYP) epoxygenases and endothelium-derived hyperpolarizing factors, whereas lack of A2A AR activation promotes vasoconstriction through Cyp4a in the mouse aorta. Adenosine 5'-N-ethylcarboxamide (NECA; 10(-6) M), an adenosine analog, caused relaxation in wild-type A2A AR (A2A AR+/+; +33.99 +/- 4.70%, P < 0.05) versus contraction in A2A AR knockout (A2A AR(-/-); -27.52 +/- 4.11%) mouse aortae. An A2A AR-specific antagonist (SCH-58261; 1 microM) changed the NECA (10(-6) M) relaxation response to contraction (-35.82 +/- 4.69%, P < 0.05) in A2A AR+/+ aortae, whereas no effect was noted in A2A AR(-/-) aortae. Significant contraction was seen in the absence of the endothelium in A2A AR+/+ (-2.58 +/- 2.25%) aortae compared with endothelium-intact aortae. An endothelial nitric oxide synthase inhibitor (N-nitro-L-arginine methyl ester; 100 microM) and a cyclooxygenase inhibitor (indomethacin; 10 microM) failed to block NECA-induced relaxation in A2A AR+/+ aortae. A selective inhibitor of CYP epoxygenases (methylsulfonyl-propargyloxyphenylhexanamide; 10 microM) changed NECA-mediated relaxation (-22.74 +/- 5.11% at 10(-6) M) and CGS-21680-mediated relaxation (-18.54 +/- 6.06% at 10(-6) M) to contraction in A2A AR+/+ aortae, whereas no response was noted in A2A AR(-/-) aortae. Furthermore, an epoxyeicosatrienoic acid (EET) antagonist [14,15-epoxyeicosa-5(Z)-enoic acid; 10 microM] was able to block NECA-induced relaxation in A2A AR+/+ aortae, whereas omega-hydroxylase inhibitors (10 microM dibromo-dodecenyl-methylsulfimide and 10 microM HET-0016) changed contraction into relaxation in A2A AR(-/-) aorta. Cyp2c29 protein was upregulated in A2A AR+/+ aortae, whereas Cyp4a was upregulated in A2A AR(-/-) aortae. Higher levels of dihydroxyeicosatrienoic acids (DHETs; 14,15-DHET, 11,12-DHET, and 8,9-DHET, P < 0.05) were found in A2A AR+/+ versus A2A AR(-/-) aortae. EET levels were not significantly different between A2A AR+/+ and A2A AR(-/-) aortae. It is concluded that CYP epoxygenases play an important role in A2A AR-mediated relaxation, and the deletion of the A2A AR leads to contraction through Cyp4a.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |