例如:"lncRNA", "apoptosis", "WRKY"

EPR and Mössbauer spectroscopy of intact mitochondria isolated from Yah1p-depleted Saccharomyces cerevisiae.

Biochemistry. 2008 Sep 16;47(37):9888-99. doi:10.1021/bi801047q. Epub 2008 Aug 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Yah1p, an [Fe 2S 2]-containing ferredoxin located in the matrix of Saccharomyces cerevisiae mitochondria, functions in the synthesis of Fe/S clusters and heme a prosthetic groups. EPR, Mossbauer spectroscopy, and electron microscopy were used to characterize the Fe that accumulates in Yah1p-depleted isolated intact mitochondria. Gal- YAH1 cells were grown in standard rich media (YPD and YPGal) under O 2 or argon atmospheres. Mitochondria were isolated anaerobically, then prepared in the as-isolated redox state, the dithionite-treated state, and the O 2-treated state. The absence of strong EPR signals from Fe/S clusters when Yah1p was depleted confirms that Yah1p is required in Fe/S cluster assembly. Yah1p-depleted mitochondria, grown with O 2 bubbling through the media, accumulated excess Fe (up to 10 mM) that was present as 2-4 nm diameter ferric nanoparticles, similar to those observed in mitochondria from yfh1Delta cells. These particles yielded a broad isotropic EPR signal centered around g = 2, characteristic of superparamagnetic relaxation. Treatment with dithionite caused Fe (3+) ions of the nanoparticles to become reduced and largely exported from the mitochondria. Fe did not accumulate in mitochondria isolated from cells grown under Ar; a significant portion of the Fe in these organelles was in the high-spin Fe (2+) state. This suggests that the O 2 used during growth of Gal- YAH1 cells is responsible, either directly or indirectly, for Fe accumulation and for oxidizing Fe (2+) --> Fe (3+) prior to aggregation. Models are proposed in which the accumulation of ferric nanoparticles is caused either by the absence of a ligand that prevents such precipitation in wild-type mitochondria or by a more oxidizing environment within the mitochondria of Yah1p-depleted cells exposed to O 2. The efficacy of reducing accumulated Fe along with chelating it should be considered as a strategy for its removal in diseases involving such accumulations.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读