例如:"lncRNA", "apoptosis", "WRKY"

A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication.

Mol. Cell. 2008 Jul 11;31(1):33-46
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce gamma-H2AX. gamma-H2AX stabilizes cell-cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve gamma-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 phosphatase complex in mammalian cells, containing PP4C, PP4R2, and PP4R3beta, that specifically dephosphorylates ATR-mediated gamma-H2AX generated during DNA replication. PP4 efficiently dephosphorylates gamma-H2AX within mononucleosomes in vitro and does not directly alter ATR or checkpoint kinase activity, suggesting that PP4 acts directly on gamma-H2AX in cells. When the PP4 complex is silenced, repair of DNA replication-mediated breaks is inefficient, and cells are hypersensitive to DNA replication inhibitors, but not radiomimetic drugs. Therefore, gamma-H2AX elimination at DNA damage foci is required for DNA damage repair, but accomplishing this task involves distinct phosphatases with potentially overlapping roles.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读