[No authors listed]
The heterogeneous nuclear ribonucleoprotein H (hnRNP) family of proteins has been shown to activate exon inclusion by binding intronic G triplets. Much less is known, however, about how hnRNP H and hnRNP F silence exons. In this study, we identify hnRNP H and hnRNP F proteins as being novel silencers of fibroblast growth factor receptor 2 exon IIIc. In cells that normally include this exon, we show that the overexpression of either hnRNP H1 or hnRNP F resulted in the dramatic silencing of exon IIIc. In cells that normally skip exon IIIc, skipping was disrupted when RNA interference was used to knock down both hnRNP H and hnRNP F. We show that an exonic GGG motif overlapped a critical exonic splicing enhancer, which was predicted to bind the SR protein ASF/SF2. Furthermore, the expression of ASF/SF2 reversed the silencing of exon IIIc caused by the expression of hnRNP H1. We show that hnRNP H and hnRNP F proteins are present in a complex with Fox2 and that the presence of Fox allows hnRNP H1 to better compete with ASF/SF2 for binding to exon IIIc. These results establish hnRNP H and hnRNP F as being repressors of exon inclusion and suggest that Fox proteins enhance their ability to antagonize ASF/SF2.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |