例如:"lncRNA", "apoptosis", "WRKY"

Gap junctions relay FGF8-mediated right-sided repression of Nodal in rabbit.

Dev. Dyn.2008 Dec;237(12):3516-27. doi:10.1002/dvdy.21535
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In vertebrate gastrula/neurula embryos, a cilia-driven leftward flow asymmetrically activates the Nodal cascade in the left lateral plate mesoderm (LPM). In frog embryos left-right axis formation was postulated to depend on gap junctions (GJs) during cleavage. Here, we show that GJs cooperate with fibroblast growth factor-8 (FGF8) to specify asymmetric Nodal in the rabbit embryo at gastrula/neurula. GJs and FGF signaling were manipulated in whole embryo and explant cultures of rabbit blastodiscs. These experiments demonstrate that right-sided inhibition of Nodal by FGF8 depended on intercellular communication by means of GJs, and that left-sided induction of Nodal required attenuation of gap junctional communication (GJC). Before flow, the left and right side were equally competent but actively prevented from Nodal induction through FGF8/GJ. Our data suggest that flow unilaterally attenuates FGF8/GJ-mediated repression of Nodal on the left side, integrating GJC and FGF8 into the flow-based mechanism of symmetry breakage in the vertebrate embryo.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读