例如:"lncRNA", "apoptosis", "WRKY"

Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer.

Cancer Res.2008 Jun 1;68(11):4086-96
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Invasion-promoting MT1-MMP is directly linked to tumorigenesis and metastasis. Our studies led us to identify those genes, the expression of which is universally linked to MT1-MMP in multiple tumor types. Genome-wide expression profiling of MT1-MMP-overexpressing versus MT1-MMP-silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 11 genes, the expression of which correlated firmly and universally with that of MT1-MMP (P < 0.00001). These genes included regulators of energy metabolism (NNT), trafficking and membrane fusion (SLCO2A1 and ANXA7), signaling and transcription (NR3C1, JAG1, PI3K delta, and CK2 alpha), chromatin rearrangement (SMARCA1), cell division (STK38/NDR1), apoptosis (DAPK1), and mRNA splicing (SNRPB2). Our subsequent extensive analysis of cultured cells, tumor xenografts, and cancer patient biopsies supported our data mining. Our results suggest that transcriptional reprogramming of the specific downstream genes, which themselves are associated with tumorigenesis, represents a distinctive "molecular signature" of the proteolytically active MT1-MMP. We suggest that the transactivation activity of MT1-MMP contributes to the promigratory cell phenotype, which is induced by this tumorigenic proteinase. The activated downstream gene network then begins functioning in unison with MT1-MMP to rework the signaling, transport, cell division, energy metabolism, and other critical cell functions and to commit the cell to migration, invasion, and, consequently, tumorigenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读